If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2-56y+80=0
a = 8; b = -56; c = +80;
Δ = b2-4ac
Δ = -562-4·8·80
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-24}{2*8}=\frac{32}{16} =2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+24}{2*8}=\frac{80}{16} =5 $
| 1-5=x-3+2x2 | | 18+15u=13u | | 3p-28/33=3 | | -31+6x=3x+20 | | 5-6=x-2+2x2 | | c4-6=20 | | 44=3u+8u= | | 11=1÷2(7x-8) | | x^2+15x+60=0 | | 544.60=230+1.21x | | 2+9x+1=3(3x+1) | | 3m+12=2(m+3)+4 | | 8+a=14 | | 11=1/2(7x-8) | | -4/5u-1/3=1/2 | | 28=10v–6v | | 3=4/3(8x-6) | | 13-5(4)=y | | -30+2x=-7+60 | | 6/12=4/v | | 1/3u+3/8u-4/7u=1/3 | | 18x=819 | | 18+x=819 | | -5(4x-2)+2x+1=151 | | 2m+4-3m=8(m+1) | | 2(3y-6)=42 | | x^2-8x+8=0 | | -5x-37=26+2x | | 8-7d=-9+5d | | 13/4x=9/6 | | 12/7=r/9 | | 2a+4=9 |